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5G relies on several complementary virtual
network functions:
AMF (Access and Mobility Management
Function) : Authentication and handover
between antennas
UPF (User Plane Function) : Internet traffic
gateway
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5G Network Deployment at Orange
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Infrastructure

Orange deploys these 5G functions provided by equipment vendors (Ericsson,
Nokia, etc.), who deliver precompiled binaries.
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Observability and enforcement of 5G Networks

For its 5G network functions, Orange wants
to:

m Monitor network function execution in
real time

m Apply appropriate security policies
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Location Approach efficiency visibility robustness portability safety Example
integrated systems [ J [ J [ J O ([ J ftrace [1]

kernel module [ [ [ ] O SE Linux [2]

eBPF [ J [ J [ J ] ([ J Tetragon [3]
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eBPF makes it possible to extend Linux kernel capabilities safely [4]:
Deployment of restricted programs directly into the kernel
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eBPF makes it possible to extend Linux kernel capabilities safely [4]:
Deployment of restricted programs directly into the kernel

A formal verifier guarantees:

termination (no unbounded loops)
no memory leaks or arbitrary access
no deadlocks
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Program Attach Granularity
type type system calls kernel function user-space function Access Control
LSM LSM_MAC O O O] ]
tracepoint tracepoint [ ] ] O] ©]
kprobe kprobe/kretprobe ° ° ° °
uprobe/uretprobe
tracing fentry/fexit ([ ([ @) ([
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o=
eBPF

Program

clang -target bpf

Development

[ ﬁeBPF Go Library

Syscall

§ GCJ [ﬁeaPF Verifier ] |, #emPF Sockets

cC <

5 &J [ﬁeaPF JIT Compiler } [ TCP/IP ]
Runtime
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User-Space Observability with eBPF

With uprobes, eBPF can trace functions in user space:

SEC("uprobe//usr/bin/myapp:main.CreateUser")
int BPF_KPROBE(create_user)
{

bpf_printk("user created !");

return O;
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The kernel replaces the
target instruction with INT3

UPROBE

. . 401120 <main>: 401120 <main>:
A CPU interrupt triggers [fomzor pusn wroo I
exeCUtion Of the eBPF 40T12TT MoV %rsp,%rbp — % 401121 mov  %rsp,%rbp
401124: movl  $60x0, -0x4(%rbp) 401124: movl  $0x0, -0x4(%rbp)
program 40112b:  xor %eax, %eax 40112b:  xor %eax, %eax
. . d: 0 6rb d: 0 rb
Registers are copied and e o e
exposed to the eBPF
ConteXt kernel: -«
run bpf program
The original instruction, execute orig insns
jmp back

which was removed, is then
replayed
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identify symbols from object files — nm tool
Reconstruct data structures used — BTF
Correctly interpret registers and memory pointers — BTF
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BPF Type Format (BTF)

BTF describes type information:

= Produced by Pahole from DWARF
data
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BTF describes type information:
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Produced by Pahole from DWARF
data

Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions
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11/28

Produced by Pahole from DWARF
data

Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions

[1] INT 'int' size=4 bits_offset=0
nr_bits=32 encoding=SIGNED

[2] STRUCT 'foo' size=8 vlen=2
'f1' type_id=1 bits_offset=0
'f2' type_id=1 bits_offset=32
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DWARF: the debugging format for compiled programs

Describes the compiled program'’s structure for debugging (maps machine
code to source code)

Used by debuggers such as GDB or LLDB
Included in ELF files (.debug_x* sections)
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ELF (Executable Linkable Format)

ELF header

Standard file format used for executables:

Program header table

E .text : program executable code
text ® .data: initialized variables
.rodata
.data

%2

Section header table
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ELF header

Standard file format used for executables:

Program header table

.text : program executable code
text .data : initialized variables
.debug_info : types, variables, functions
rodete .debug_line : source code lines <> address
mapping
.data

A

Section header table
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Information defined by DWAREF:
Source-binary mapping: source line «+» machine address
Variables and types: names, types, memory locations
Functions and calls: signatures, return values, call stack
Variable locations: register or stack
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Format describing types and data structures used by the kernel and eBPF
programs.

Allows correct parsing of CPU registers:

kernel internal data structures
user program data structures

Platform-agnostic — no recompilation needed
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Pahole - Usage example (C)

struct Example {
int id;
char name[32];

};

int maFonctionTest(struct Example *e) {
printf("ID: %d, Name: %s\n", e->id, e->name);
return O;

}

int main(void) {
struct Example e = {1, "BTF Example"};
maFonctionTest (&e) ;
return O;

}
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Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example
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Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest
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Pahole - Usage example (C)
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Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest

$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

$ bpftool btf dump file simple_program_c.btf | grep -A 2 Example
[11] STRUCT 'Example' size=36 vlen=2

'id' type_id=7 bits_offset=0

'name' type_id=12 bits_offset=32
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Pahole - Usage example (Go)

type Example struct {
ID int
Name string

}

func maFonctionTest(e *Example) int {
fmt.Printf("ID: %d, Name: %s\n", e.ID, e.Name)
return O

}

func main() {
e := Example{
ID: 1,
Name: "BTF Example",
}

maFonctionTest (&e)
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Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example
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Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest
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Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest

$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

$ bpftool btf dump file simple_program_go.btf | grep -A 2 Example
[1857] STRUCT 'main.Example' size=24 vlen=2

'ID' type_id=76 bits_offset=0

'Name' type_id=90 bits_offset=64
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Problem Statement
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Limitations of Pahole for the Go Language
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Pahole systematically fails on complex Go binaries — inconsistencies
between DWARF and libbpf
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For simple Go programs: BTF generation works

Pahole systematically fails on complex Go binaries — inconsistencies
between DWARF and libbpf
Go is widely used in the telecommunications industry
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Limitations of Pahole for the Go Language

$ make kubeadm DBG=1
$ _output/bin/kubeadm

KUBEADM
Easily bootstrap a secure Kubernetes cluster

Please give us feedback at:
https://github.com/kubernetes/kubeadm/issues
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$ make kubeadm DBG=1
$ _output/bin/kubeadm
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Limitations of Pahole for the Go Language

$ make kubectl DBG=1
$ _output/bin/kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/
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$ make kubectl DBG=1
$ _output/bin/kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/

$ pahole --btf_encode_detached=./kubectl.btf _output/bin/kubectl
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF
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Objectives
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Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
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Identify differences in results by testing other Go compilers (such as gccgo)
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Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
Identify differences in results by testing other Go compilers (such as gccgo)

Incrementally test increasingly complex Go programs to pinpoint
incompatibility causes:

Understand how the Go compiler generates DWARF data

Identify blocking points within Pahole
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Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
Identify differences in results by testing other Go compilers (such as gccgo)

Incrementally test increasingly complex Go programs to pinpoint
incompatibility causes:

Understand how the Go compiler generates DWARF data

Identify blocking points within Pahole

(Adapt Pahole to ensure full compatibility with Go)
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Local installation (Linux = 6.0)
Preconfigured virtual machine (VirtualBox)

All resources available at:
https://gitlabev.imtbs-tsp.eu/paul.houssel/redocs25-orange
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BTF documentation: https://docs.kernel.org/bpf/btf.html
DWARF V4 specification: https://dwarfstd.org/doc/DWARF4.pdf

Introduction to the DWARF format: https://dwarfstd.org/doc/Debugging
using DWARF-2012.pdf

Problematic deduplication algorithm: https://nakryiko.com/posts/btf-dedup/
Tools for parsing DWARF data:

objdump
readelf
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