
Context Problem Statement Objectives References

Observability with eBPF
REDOCS’25 - GDR Sécurité Informatique

Paul Houssel1,2 Kahina Lazri1 Tristan D’audibert1

1Orange Research, Châtillon
2Institut Polytechnique de Paris, SAMOVAR, Télécom SudParis, Palaiseau

13th of October 2025

1 / 28



Context Problem Statement Objectives References

Context

2 / 28



Context Problem Statement Objectives References

5G Network Deployment at Orange

5G relies on several complementary virtual
network functions:
▶ AMF (Access and Mobility Management

Function) : Authentication and handover
between antennas

▶ UPF (User Plane Function) : Internet traffic
gateway

Orange deploys these 5G functions provided by equipment vendors (Ericsson,
Nokia, etc.), who deliver precompiled binaries.

3 / 28



Context Problem Statement Objectives References

5G Network Deployment at Orange

5G relies on several complementary virtual
network functions:
▶ AMF (Access and Mobility Management

Function) : Authentication and handover
between antennas

▶ UPF (User Plane Function) : Internet traffic
gateway

Orange deploys these 5G functions provided by equipment vendors (Ericsson,
Nokia, etc.), who deliver precompiled binaries.

3 / 28



Context Problem Statement Objectives References

5G Network Deployment at Orange

5G relies on several complementary virtual
network functions:
▶ AMF (Access and Mobility Management

Function) : Authentication and handover
between antennas

▶ UPF (User Plane Function) : Internet traffic
gateway

Orange deploys these 5G functions provided by equipment vendors (Ericsson,
Nokia, etc.), who deliver precompiled binaries.

3 / 28



Context Problem Statement Objectives References

Observability and enforcement of 5G Networks

For its 5G network functions, Orange wants
to:

Monitor network function execution in
real time
Apply appropriate security policies

4 / 28



Context Problem Statement Objectives References

Observability and enforcement of 5G Networks

For its 5G network functions, Orange wants
to:

Monitor network function execution in
real time
Apply appropriate security policies

4 / 28



Context Problem Statement Objectives References

Kernel Telemetry Options

Location Approach efficiency visibility robustness portability safety Example

kernel

integrated systems l l l m l ftrace [1]

kernel module l l l w m SE Linux [2]

eBPF l l l w l Tetragon [3]

4 / 28



Context Problem Statement Objectives References

Kernel Telemetry Options

Location Approach efficiency visibility robustness portability safety Example

kernel

integrated systems l l l m l ftrace [1]

kernel module l l l w m SE Linux [2]

eBPF l l l w l Tetragon [3]

4 / 28



Context Problem Statement Objectives References

Kernel Telemetry Options

Location Approach efficiency visibility robustness portability safety Example

kernel

integrated systems l l l m l ftrace [1]

kernel module l l l w m SE Linux [2]

eBPF l l l w l Tetragon [3]

4 / 28



Context Problem Statement Objectives References

Kernel Telemetry Options

Location Approach efficiency visibility robustness portability safety Example

kernel

integrated systems l l l m l ftrace [1]

kernel module l l l w m SE Linux [2]

eBPF l l l w l Tetragon [3]

4 / 28



Context Problem Statement Objectives References

eBPF (extended Berkeley Packet Filter)

eBPF makes it possible to extend Linux kernel capabilities safely [4]:
Deployment of restricted programs directly into the kernel

A formal verifier guarantees:
▶ termination (no unbounded loops)
▶ no memory leaks or arbitrary access
▶ no deadlocks

5 / 28



Context Problem Statement Objectives References

eBPF (extended Berkeley Packet Filter)

eBPF makes it possible to extend Linux kernel capabilities safely [4]:
Deployment of restricted programs directly into the kernel
A formal verifier guarantees:
▶ termination (no unbounded loops)
▶ no memory leaks or arbitrary access
▶ no deadlocks

5 / 28



Context Problem Statement Objectives References

eBPF

Types of eBPF Programs

Program Attach Granularity
type type system calls kernel function user-space function Access Control

LSM LSM_MAC m m m l

tracepoint tracepoint l w m m

kprobe
kprobe/kretprobe
uprobe/uretprobe l l l l

tracing fentry/fexit l l m l

6 / 28



Context Problem Statement Objectives References

eBPF [5]

7 / 28



Context Problem Statement Objectives References

User-Space Observability with eBPF

With uprobes, eBPF can trace functions in user space:

SEC("uprobe//usr/bin/myapp:main.CreateUser")
int BPF_KPROBE(create_user)
{

bpf_printk("user created !");
return 0;

}

8 / 28



Context Problem Statement Objectives References

User-Space Observability with eBPF

1. The kernel replaces the
target instruction with INT3

2. A CPU interrupt triggers
execution of the eBPF
program

3. Registers are copied and
exposed to the eBPF
context

4. The original instruction,
which was removed, is then
replayed

9 / 28



Context Problem Statement Objectives References

Observability of Compiled 5G Functions

identify symbols from object files → nm tool
Reconstruct data structures used → BTF
Correctly interpret registers and memory pointers → BTF

10 / 28



Context Problem Statement Objectives References

BPF Type Format (BTF)

BTF describes type information:
Produced by Pahole from DWARF
data

Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions

[1] INT 'int' size=4 bits_offset=0
nr_bits=32 encoding=SIGNED

[2] STRUCT 'foo' size=8 vlen=2
'f1' type_id=1 bits_offset=0
'f2' type_id=1 bits_offset=32

11 / 28



Context Problem Statement Objectives References

BPF Type Format (BTF)

BTF describes type information:
Produced by Pahole from DWARF
data
Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions

[1] INT 'int' size=4 bits_offset=0
nr_bits=32 encoding=SIGNED

[2] STRUCT 'foo' size=8 vlen=2
'f1' type_id=1 bits_offset=0
'f2' type_id=1 bits_offset=32

11 / 28



Context Problem Statement Objectives References

BPF Type Format (BTF)

BTF describes type information:
Produced by Pahole from DWARF
data
Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions

[1] INT 'int' size=4 bits_offset=0
nr_bits=32 encoding=SIGNED

[2] STRUCT 'foo' size=8 vlen=2
'f1' type_id=1 bits_offset=0
'f2' type_id=1 bits_offset=32

11 / 28



Context Problem Statement Objectives References

DWARF (Debug With Arbitrary Record Format)

DWARF: the debugging format for compiled programs
Describes the compiled program’s structure for debugging (maps machine
code to source code)
Used by debuggers such as GDB or LLDB
Included in ELF files (.debug_* sections)

12 / 28



Context Problem Statement Objectives References

ELF (Executable Linkable Format)

Standard file format used for executables:
.text : program executable code
.data : initialized variables

.debug_info : types, variables, functions

.debug_line : source code lines ↔ address
mapping
...

13 / 28



Context Problem Statement Objectives References

ELF (Executable Linkable Format)

Standard file format used for executables:
.text : program executable code
.data : initialized variables
.debug_info : types, variables, functions
.debug_line : source code lines ↔ address
mapping
...

13 / 28



Context Problem Statement Objectives References

DWARF (Debug With Arbitrary Record Format)

Information defined by DWARF:
Source–binary mapping: source line ↔ machine address
Variables and types: names, types, memory locations
Functions and calls: signatures, return values, call stack
Variable locations: register or stack

14 / 28



Context Problem Statement Objectives References

BTF (BPF File Format)

Format describing types and data structures used by the kernel and eBPF
programs.

Utility for eBPF
Allows correct parsing of CPU registers:
▶ kernel internal data structures
▶ user program data structures

Platform-agnostic → no recompilation needed

15 / 28



Context Problem Statement Objectives References

Pahole - Usage example (C)

struct Example {
int id;
char name[32];

};

int maFonctionTest(struct Example *e) {
printf("ID: %d, Name: %s\n", e->id, e->name);
return 0;

}
int main(void) {

struct Example e = {1, "BTF Example"};
maFonctionTest(&e);
return 0;

}

16 / 28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest
$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

$ bpftool btf dump file simple_program_c.btf | grep -A 2 Example
[11] STRUCT 'Example' size=36 vlen=2

'id' type_id=7 bits_offset=0
'name' type_id=12 bits_offset=32

17 / 28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example
$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest

$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

$ bpftool btf dump file simple_program_c.btf | grep -A 2 Example
[11] STRUCT 'Example' size=36 vlen=2

'id' type_id=7 bits_offset=0
'name' type_id=12 bits_offset=32

17 / 28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example
$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest
$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

$ bpftool btf dump file simple_program_c.btf | grep -A 2 Example
[11] STRUCT 'Example' size=36 vlen=2

'id' type_id=7 bits_offset=0
'name' type_id=12 bits_offset=32

17 / 28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example
$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest
$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

$ bpftool btf dump file simple_program_c.btf | grep -A 2 Example
[11] STRUCT 'Example' size=36 vlen=2

'id' type_id=7 bits_offset=0
'name' type_id=12 bits_offset=32

17 / 28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

type Example struct {
ID int
Name string

}

func maFonctionTest(e *Example) int {
fmt.Printf("ID: %d, Name: %s\n", e.ID, e.Name)
return 0

}

func main() {
e := Example{

ID: 1,
Name: "BTF Example",

}
maFonctionTest(&e)

}

18 / 28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest
$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

$ bpftool btf dump file simple_program_go.btf | grep -A 2 Example
[1857] STRUCT 'main.Example' size=24 vlen=2

'ID' type_id=76 bits_offset=0
'Name' type_id=90 bits_offset=64

19 / 28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example
$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest

$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

$ bpftool btf dump file simple_program_go.btf | grep -A 2 Example
[1857] STRUCT 'main.Example' size=24 vlen=2

'ID' type_id=76 bits_offset=0
'Name' type_id=90 bits_offset=64

19 / 28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example
$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest
$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

$ bpftool btf dump file simple_program_go.btf | grep -A 2 Example
[1857] STRUCT 'main.Example' size=24 vlen=2

'ID' type_id=76 bits_offset=0
'Name' type_id=90 bits_offset=64

19 / 28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example
$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest
$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

$ bpftool btf dump file simple_program_go.btf | grep -A 2 Example
[1857] STRUCT 'main.Example' size=24 vlen=2

'ID' type_id=76 bits_offset=0
'Name' type_id=90 bits_offset=64

19 / 28



Context Problem Statement Objectives References

Problem Statement

20 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

For simple Go programs: BTF generation works
Pahole systematically fails on complex Go binaries → inconsistencies
between DWARF and libbpf
Go is widely used in the telecommunications industry

21 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

For simple Go programs: BTF generation works

Pahole systematically fails on complex Go binaries → inconsistencies
between DWARF and libbpf
Go is widely used in the telecommunications industry

21 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

For simple Go programs: BTF generation works
Pahole systematically fails on complex Go binaries → inconsistencies
between DWARF and libbpf

Go is widely used in the telecommunications industry

21 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

For simple Go programs: BTF generation works
Pahole systematically fails on complex Go binaries → inconsistencies
between DWARF and libbpf
Go is widely used in the telecommunications industry

21 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

$ make kubeadm DBG=1
$ _output/bin/kubeadm

������������������������������������������������������������
� KUBEADM �
� Easily bootstrap a secure Kubernetes cluster �
� �
� Please give us feedback at: �
� https://github.com/kubernetes/kubeadm/issues �
������������������������������������������������������������

...

$ pahole --btf_encode_detached=./kubeadm.btf _output/bin/kubeadm
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF

22 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

$ make kubeadm DBG=1
$ _output/bin/kubeadm

������������������������������������������������������������
� KUBEADM �
� Easily bootstrap a secure Kubernetes cluster �
� �
� Please give us feedback at: �
� https://github.com/kubernetes/kubeadm/issues �
������������������������������������������������������������

...

$ pahole --btf_encode_detached=./kubeadm.btf _output/bin/kubeadm
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF

22 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

$ make kubectl DBG=1
$ _output/bin/kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/
...

$ pahole --btf_encode_detached=./kubectl.btf _output/bin/kubectl
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF

23 / 28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

$ make kubectl DBG=1
$ _output/bin/kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/
...

$ pahole --btf_encode_detached=./kubectl.btf _output/bin/kubectl
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF

23 / 28



Context Problem Statement Objectives References

Objectives

24 / 28



Context Problem Statement Objectives References

Work Plan

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.

1. Identify differences in results by testing other Go compilers (such as gccgo)
2. Incrementally test increasingly complex Go programs to pinpoint

incompatibility causes:
▶ Understand how the Go compiler generates DWARF data
▶ Identify blocking points within Pahole

3. (Adapt Pahole to ensure full compatibility with Go)

25 / 28



Context Problem Statement Objectives References

Work Plan

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
1. Identify differences in results by testing other Go compilers (such as gccgo)

2. Incrementally test increasingly complex Go programs to pinpoint
incompatibility causes:
▶ Understand how the Go compiler generates DWARF data
▶ Identify blocking points within Pahole

3. (Adapt Pahole to ensure full compatibility with Go)

25 / 28



Context Problem Statement Objectives References

Work Plan

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
1. Identify differences in results by testing other Go compilers (such as gccgo)
2. Incrementally test increasingly complex Go programs to pinpoint

incompatibility causes:
▶ Understand how the Go compiler generates DWARF data
▶ Identify blocking points within Pahole

3. (Adapt Pahole to ensure full compatibility with Go)

25 / 28



Context Problem Statement Objectives References

Work Plan

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
1. Identify differences in results by testing other Go compilers (such as gccgo)
2. Incrementally test increasingly complex Go programs to pinpoint

incompatibility causes:
▶ Understand how the Go compiler generates DWARF data
▶ Identify blocking points within Pahole

3. (Adapt Pahole to ensure full compatibility with Go)

25 / 28



Context Problem Statement Objectives References

Technical Environment

1. Local installation (Linux ≥ 6.0)
2. Preconfigured virtual machine (VirtualBox)

All resources available at:
https://gitlabev.imtbs-tsp.eu/paul.houssel/redocs25-orange

26 / 28

https://gitlabev.imtbs-tsp.eu/paul.houssel/redocs25-orange


Context Problem Statement Objectives References

Useful References

BTF documentation: https://docs.kernel.org/bpf/btf.html
DWARF V4 specification: https://dwarfstd.org/doc/DWARF4.pdf
Introduction to the DWARF format: https://dwarfstd.org/doc/Debugging
using DWARF-2012.pdf
Problematic deduplication algorithm: https://nakryiko.com/posts/btf-dedup/
Tools for parsing DWARF data:
1. objdump
2. readelf

27 / 28

https://docs.kernel.org/bpf/btf.html
https://dwarfstd.org/doc/DWARF4.pdf
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://nakryiko.com/posts/btf-dedup/
https://www.man7.org/linux/man-pages/man1/objdump.1.html
https://www.man7.org/linux/man-pages/man1/readelf.1.html


Context Problem Statement Objectives References

Observability with eBPF
REDOCS’25 - GDR Sécurité Informatique

Paul Houssel1,2 Kahina Lazri1 Tristan D’audibert1

1Orange Research, Châtillon
2Institut Polytechnique de Paris, SAMOVAR, Télécom SudParis, Palaiseau

13th of October 2025

28 / 28



Context Problem Statement Objectives References

References I

“ftrace - Function Tracer — The Linux Kernel documentation,” 2008.

S. Smalley, C. Vance, and W. Salamon, Implementing SELinux as a Linux
security module.
NAI Labs Report, 2001.

“Tetragon - eBPF-based Security Observability and Runtime Enforcement,”
2022.

B. Gbadamosi, L. Leonardi, T. Pulls, T. Høiland-Jørgensen, S. Ferlin-Reiter,
S. Sorce, and A. Brunström, “The eBPF Runtime in the Linux Kernel,” Oct.
2024.
arXiv:2410.00026 [cs].

“What is ebpf? an introduction and deep dive into the ebpf technology.”

29 / 28


	Context
	Problem Statement
	Objectives
	References

