Context Problem Statement Objectives References

Observability with eBPF
REDOCS’25 - GDR Sécurité Informatique

Paul Houssel'?2 Kahina Lazri' Tristan D’audibert’

1Orange Research, Chatillon
2|nstitut Polytechnique de Paris, SAMOVAR, Télécom SudParis, Palaiseau

13" of October 2025

TELECOM @ INSTITUT
'0 POLYTECHNIQUE
“Y&/: DE PARIS

orange" 5 fi |

1/28



Context Problem Statement Objectives References

Context

2/28



Context Problem Statement Objectives References

5G relies on several complementary virtual
network functions:
AMF (Access and Mobility Management
Function) : Authentication and handover
between antennas
UPF (User Plane Function) : Internet traffic
gateway

3/28



Context Problem Statement Objectives References

5G Network Deployment at Orange

[
m 5G relies on several complementary virtual IwelnUI |[nss= ][ wrF H_E’,“LH UDR | [ AusF |
network functions: ‘""‘-"-‘-3 ------------- i
> AMF (Access and Mobility Management = : . g
Function) : Authentication and handover e
between antennas S e
> UPF (User Plane Function) : Internet traffic MPN | Freesge CN
gateway

Infrastructure

3/28



Context Problem Statement Objectives References

|
5G relies on several complementary virtual |w}hm | [ NssF ][ N} (wom | [G0R ] [ause]
network functions: breretes g nnden s A s
AMF (Access and Mobility Management =% : . g
Function) : Authentication and handover e
between antennas S e
UPF (User Plane Function) : Internet traffic MPN | Frees6C CN
gateway

Infrastructure

Orange deploys these 5G functions provided by equipment vendors (Ericsson,
Nokia, etc.), who deliver precompiled binaries.

3/28



Context Problem Statement Objectives References

Observability and enforcement of 5G Networks

For its 5G network functions, Orange wants
to:

m Monitor network function execution in
real time

m Apply appropriate security policies

4/28



Context Problem Statement Objectives References

Observability and enforcement of 5G Networks

For its 5G network functions, Orange wants
to:

m Monitor network function execution in
real time

m Apply appropriate security policies

4/28

_

Operating System (Host)

—

Hardware

—




Context Problem Statement Objectives References

Location Approach efficiency visibility robustness portability safety Example
integrated systems [ J [ J [ J O ([ J ftrace [1]

kernel module [ [ [ ] O SE Linux [2]

eBPF [ J [ J [ J ] ([ J Tetragon [3]

4728



Context Problem Statement Objectives References

Location Approach efficiency visibility robustness portability safety Example
kernel module [ J [ J [ J ] O SE Linux [2]
eBPF [ [ [ ] ([ Tetragon [3]

4728



Context Problem Statement Objectives References

Location Approach efficiency visibility robustness portability safety Example
integrated systems [ J [ J ([ J @) [ J ftrace [1]
eBPF [ [ [ ] [ Tetragon [3]

4728



Context Problem Statement Objectives References

Location Approach efficiency visibility robustness portability safety Example
integrated systems [ J ([ J [ J O [ J ftrace [1]
kernel module o [ ] o ] @) SE Linux [2]

4728



Context Problem Statement Objectives References

eBPF makes it possible to extend Linux kernel capabilities safely [4]:
Deployment of restricted programs directly into the kernel

5/28



Context Problem Statement Objectives References

eBPF makes it possible to extend Linux kernel capabilities safely [4]:
Deployment of restricted programs directly into the kernel

A formal verifier guarantees:

termination (no unbounded loops)
no memory leaks or arbitrary access
no deadlocks

5/28



Context Problem Statement Objectives References

Program Attach Granularity
type type system calls kernel function user-space function Access Control
LSM LSM_MAC O O O] ]
tracepoint tracepoint [ ] ] O] ©]
kprobe kprobe/kretprobe ° ° ° °
uprobe/uretprobe
tracing fentry/fexit ([ ([ @) ([

6/28



Context Problem Statement Objectives References

o=
eBPF

Program

clang -target bpf

Development

[ ﬁeBPF Go Library

Syscall

§ GCJ [ﬁeaPF Verifier ] |, #emPF Sockets

cC <

5 &J [ﬁeaPF JIT Compiler } [ TCP/IP ]
Runtime

7/28



Context Problem Statement Objectives References

User-Space Observability with eBPF

With uprobes, eBPF can trace functions in user space:

SEC("uprobe//usr/bin/myapp:main.CreateUser")
int BPF_KPROBE(create_user)
{

bpf_printk("user created !");

return O;

8/28



Context Problem Statement Objectives References

The kernel replaces the
target instruction with INT3

UPROBE

. . 401120 <main>: 401120 <main>:
A CPU interrupt triggers [fomzor pusn wroo I
exeCUtion Of the eBPF 40T12TT MoV %rsp,%rbp — % 401121 mov  %rsp,%rbp
401124: movl  $60x0, -0x4(%rbp) 401124: movl  $0x0, -0x4(%rbp)
program 40112b:  xor %eax, %eax 40112b:  xor %eax, %eax
. . d: 0 6rb d: 0 rb
Registers are copied and e o e
exposed to the eBPF
ConteXt kernel: -«
run bpf program
The original instruction, execute orig insns
jmp back

which was removed, is then
replayed

9/28



Context Problem Statement Objectives References

identify symbols from object files — nm tool
Reconstruct data structures used — BTF
Correctly interpret registers and memory pointers — BTF

10/28



Context Problem Statement Objectives References

BPF Type Format (BTF)

BTF describes type information:

= Produced by Pahole from DWARF
data

11/28



Context Problem Statement Objectives References

BTF describes type information:

11/28

Produced by Pahole from DWARF
data

Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions



Context Problem Statement Objectives References

BTF describes type information:

11/28

Produced by Pahole from DWARF
data

Allows linking eBPF code to the
target kernel without requiring
recompilation, and makes it
portable across kernel versions

[1] INT 'int' size=4 bits_offset=0
nr_bits=32 encoding=SIGNED

[2] STRUCT 'foo' size=8 vlen=2
'f1' type_id=1 bits_offset=0
'f2' type_id=1 bits_offset=32




Context Problem Statement Objectives References

DWARF: the debugging format for compiled programs

Describes the compiled program'’s structure for debugging (maps machine
code to source code)

Used by debuggers such as GDB or LLDB
Included in ELF files (.debug_x* sections)

12/28



Context Problem Statement Objectives References

ELF (Executable Linkable Format)

ELF header

Standard file format used for executables:

Program header table

E .text : program executable code
text ® .data: initialized variables
.rodata
.data

%2

Section header table

13/28



Context Problem Statement Objectives References

ELF header

Standard file format used for executables:

Program header table

.text : program executable code
text .data : initialized variables
.debug_info : types, variables, functions
rodete .debug_line : source code lines <> address
mapping
.data

A

Section header table

13/28



Context Problem Statement Objectives References

Information defined by DWAREF:
Source-binary mapping: source line «+» machine address
Variables and types: names, types, memory locations
Functions and calls: signatures, return values, call stack
Variable locations: register or stack

14/28



Context Problem Statement Objectives References

Format describing types and data structures used by the kernel and eBPF
programs.

Allows correct parsing of CPU registers:

kernel internal data structures
user program data structures

Platform-agnostic — no recompilation needed

15/28



Context Problem Statement Objectives References

Pahole - Usage example (C)

struct Example {
int id;
char name[32];

};

int maFonctionTest(struct Example *e) {
printf("ID: %d, Name: %s\n", e->id, e->name);
return O;

}

int main(void) {
struct Example e = {1, "BTF Example"};
maFonctionTest (&e) ;
return O;

}

16/28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

17/28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest

17/28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest

$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

17/28



Context Problem Statement Objectives References

Pahole - Usage example (C)

$ ./simple_program_c
ID: 1, Name: BTF Example

$ nm ./simple_program_c | grep maFonctionTest
0000000000001180 T maFonctionTest

$ pahole --btf_encode_detached=./simple_program_c.btf ./simple_program_c

$ bpftool btf dump file simple_program_c.btf | grep -A 2 Example
[11] STRUCT 'Example' size=36 vlen=2

'id' type_id=7 bits_offset=0

'name' type_id=12 bits_offset=32

17/28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

type Example struct {
ID int
Name string

}

func maFonctionTest(e *Example) int {
fmt.Printf("ID: %d, Name: %s\n", e.ID, e.Name)
return O

}

func main() {
e := Example{
ID: 1,
Name: "BTF Example",
}

maFonctionTest (&e)

18/28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

19/28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest

19/28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest

$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

19/28



Context Problem Statement Objectives References

Pahole - Usage example (Go)

$ ./simple_program_go
ID: 1, Name: BTF Example

$ nm ./simple_program_go | grep maFonctionTest
00000000004b0940 T main.maFonctionTest

$ pahole --btf_encode_detached=./simple_program_go.btf ./simple_program_go

$ bpftool btf dump file simple_program_go.btf | grep -A 2 Example
[1857] STRUCT 'main.Example' size=24 vlen=2

'ID' type_id=76 bits_offset=0

'Name' type_id=90 bits_offset=64

19/28



Context Problem Statement Objectives References

Problem Statement

20/28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

21/28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

m For simple Go programs: BTF generation works

21/28



Context Problem Statement Objectives References

For simple Go programs: BTF generation works

Pahole systematically fails on complex Go binaries — inconsistencies
between DWARF and libbpf

21/28



Context Problem Statement Objectives References

For simple Go programs: BTF generation works

Pahole systematically fails on complex Go binaries — inconsistencies
between DWARF and libbpf
Go is widely used in the telecommunications industry

21/28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

$ make kubeadm DBG=1
$ _output/bin/kubeadm

KUBEADM
Easily bootstrap a secure Kubernetes cluster

Please give us feedback at:
https://github.com/kubernetes/kubeadm/issues

22/28



Context Problem Statement Objectives References

$ make kubeadm DBG=1
$ _output/bin/kubeadm

KUBEADM
Easily bootstrap a secure Kubernetes cluster

Please give us feedback at:
https://github.com/kubernetes/kubeadm/issues

$ pahole --btf_encode_detached=./kubeadm.btf _output/bin/kubeadm
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF

22/28



Context Problem Statement Objectives References

Limitations of Pahole for the Go Language

$ make kubectl DBG=1
$ _output/bin/kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/

23/28



Context Problem Statement Objectives References

23/28

$ make kubectl DBG=1
$ _output/bin/kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/

$ pahole --btf_encode_detached=./kubectl.btf _output/bin/kubectl
btf_encoder__encode: btf__dedup failed!
Failed to encode BTF




Context Problem Statement Objectives References

Objectives

24/28



Context Problem Statement Objectives References

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.

25/28



Context Problem Statement Objectives References

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.

Identify differences in results by testing other Go compilers (such as gccgo)

25/28



Context Problem Statement Objectives References

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
Identify differences in results by testing other Go compilers (such as gccgo)

Incrementally test increasingly complex Go programs to pinpoint
incompatibility causes:

Understand how the Go compiler generates DWARF data

Identify blocking points within Pahole

25/28



Context Problem Statement Objectives References

Investigate the structure of DWARF data generated by the Go compiler to
understand the limitations of libbpf, which Pahole uses to generate BTF files.
Identify differences in results by testing other Go compilers (such as gccgo)

Incrementally test increasingly complex Go programs to pinpoint
incompatibility causes:

Understand how the Go compiler generates DWARF data

Identify blocking points within Pahole

(Adapt Pahole to ensure full compatibility with Go)

25/28



Context Problem Statement Objectives References

Local installation (Linux = 6.0)
Preconfigured virtual machine (VirtualBox)

All resources available at:
https://gitlabev.imtbs-tsp.eu/paul.houssel/redocs25-orange

26/28


https://gitlabev.imtbs-tsp.eu/paul.houssel/redocs25-orange

Context Problem Statement Objectives References

BTF documentation: https://docs.kernel.org/bpf/btf.html
DWARF V4 specification: https://dwarfstd.org/doc/DWARF4.pdf

Introduction to the DWARF format: https://dwarfstd.org/doc/Debugging
using DWARF-2012.pdf

Problematic deduplication algorithm: https://nakryiko.com/posts/btf-dedup/
Tools for parsing DWARF data:

objdump
readelf

27/28


https://docs.kernel.org/bpf/btf.html
https://dwarfstd.org/doc/DWARF4.pdf
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://nakryiko.com/posts/btf-dedup/
https://www.man7.org/linux/man-pages/man1/objdump.1.html
https://www.man7.org/linux/man-pages/man1/readelf.1.html

Context Problem Statement Objectives References

Observability with eBPF
REDOCS’25 - GDR Sécurité Informatique

Paul Houssel'?2 Kahina Lazri' Tristan D’audibert’

1Orange Research, Chatillon
2|nstitut Polytechnique de Paris, SAMOVAR, Télécom SudParis, Palaiseau

13" of October 2025

TELECOM @ INSTITUT
'0 POLYTECHNIQUE
“Y&/: DE PARIS

orange" 5 fi |

28/28



Context Problem Statement Objectives References

References |

29/28

“ftrace - Function Tracer — The Linux Kernel documentation,” 2008.

5] S. Smalley, C. Vance, and W. Salamon, Implementing SELinux as a Linux
security module.
NAI Labs Report, 2001.
“Tetragon - eBPF-based Security Observability and Runtime Enforcement,”
2022.

B. Gbadamosi, L. Leonardi, T. Pulls, T. Hgiland-Jergensen, S. Ferlin-Reiter,
S. Sorce, and A. Brunstrom, “The eBPF Runtime in the Linux Kernel,” Oct.

2024.
arXiv:2410.00026 [cs].

“What is ebpf? an introduction and deep dive into the ebpf technology.”

i

I
-



	Context
	Problem Statement
	Objectives
	References

