
Context PhD Research Plan Preliminary Results and Future Work Conclusion

Towards Provenance for Cybersecurity in
Cloud-Native Production Infrastructure

DSN 2025 Doctoral Forum

Paul R. B. Houssel1,2 Sylvie Laniepce1 Olivier Levillain2

1Orange Research, Caen, France
2Institut Polytechnique de Paris, SAMOVAR, Télécom SudParis, Palaiseau, France

June 25, 2025

1

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Provenance Graphs

interactions between system subjects and objects
understand system behavior, establish causality

threat detection
▶ sub-graph embedding [1]
▶ graph queries [2]
▶ benign behavior model [1, 3]

forensics
▶ post-mortem root cause analysis [4]
▶ active threat hunting [5]

process A pipe process B
write read

2

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Provenance Graphs

interactions between system subjects and objects
understand system behavior, establish causality
threat detection
▶ sub-graph embedding [1]
▶ graph queries [2]
▶ benign behavior model [1, 3]

forensics
▶ post-mortem root cause analysis [4]
▶ active threat hunting [5]

process A pipe process B
write read

2

Context PhD Research Plan Preliminary Results and Future Work Conclusion

PhD Research Plan

3

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Cloud-Native: An emerging infrastructure shift

Telemetry Collection for Cloud-Native production environments

fine-grained, per-container telemetry
distinguish container and host activity
handle large system activity
uniquely identify system objects

4

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Telemetry Collection for Provenance

Location Approach Efficiency Visibility Safety Portability Example

user land ptrace, fs snapshot m m l l strace [6], ARTISAN [7]

kernel

integrated tool l l l m ftrace [8], auditd [9]

kernel module l l m l SELinux [10], CamFlow [4]

eBPF l l l l falco [11], tetragon [12]

5

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Telemetry Collection for Provenance

Location Approach Efficiency Visibility Safety Portability Example

user land ptrace, fs snapshot m m l l strace [6], ARTISAN [7]

kernel

integrated tool l l l m ftrace [8], auditd [9]

kernel module l l m l SELinux [10], CamFlow [4]

eBPF l l l l falco [11], tetragon [12]

3

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Telemetry Collection for Provenance

Location Approach Efficiency Visibility Safety Portability Example

user land ptrace, fs snapshot m m l l strace [6], ARTISAN [7]

kernel

integrated tool l l l m ftrace [8], auditd [9]

kernel module l l m l SELinux [10], CamFlow [4]

eBPF l l l l falco [11], tetragon [12]

3

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Telemetry Collection for Provenance

Location Approach Efficiency Visibility Safety Portability Example

user land ptrace, fs snapshot m m l l strace [6], ARTISAN [7]

kernel

integrated tools l l l m ftrace [8], auditd [9]

kernel module l l m l SELinux [10], CamFlow [4]

eBPF l l l l falco [11], tetragon [12]

3

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Linux Security Module (LSM) hooks

Kernel

accept accept4

sys_accept4

sys_accept4_file

do_accept

socket_accept

connection error

4

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Linux Security Module (LSM) hooks

verifier

Kernel

BPF

maps

accept accept4

sys_accept4

sys_accept4_file

do_accept

socket_accept
Connection ?

connection error

No/Yes

SEC(" l sm/ socket _accept ")
i nt BPF_PROG(t ask_accept _l sm) {

st r uct event evt = { } ;
 evt . pi d = bpf _get _cur r ent _pi d() ;

bpf _per f _event _out put (&evt) ;
 r et ur n 0;
}

User Program

BPF Bytecode

Telemetry Traces

5

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Preliminary Results and Future Work

6

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Coverage: sufficient system visibility for sound provenance ?

Objective
relationship between system
calls and LSM hooks

Method
static analysis of Linux kernel
source code (v6.13)

cflow (call graphs) [13]
cscope (code
navigation) [14]

SYSCALL_DEFINE2 (ftruncate, unsigned int, fd, off_t, length)
../linux/fs/open.c:214

int do_sys_ftruncate (unsigned int fd, loff_t length, int small)
../linux/fs/open.c:202

int do_ftruncate (struct file *file, loff_t length, int small)
../linux/fs/open.c:163

...

... security_file_truncate()
int do_truncate (...)
../linux/fs/open.c:39

7

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Coverage: sufficient system visibility for sound provenance ?

Objective
relationship between system
calls and LSM hooks

Method
static analysis of Linux kernel
source code (v6.13)

cflow (call graphs) [13]
cscope (code
navigation) [14]

SYSCALL_DEFINE2 (ftruncate, unsigned int, fd, off_t, length)
../linux/fs/open.c:214

int do_sys_ftruncate (unsigned int fd, loff_t length, int small)
../linux/fs/open.c:202

int do_ftruncate (struct file *file, loff_t length, int small)
../linux/fs/open.c:163

...

... security_file_truncate()
int do_truncate (...)
../linux/fs/open.c:39

7

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Coverage: sufficient system visibility for sound provenance ?

Objective
relationship between system
calls and LSM hooks

Method
static analysis of Linux kernel
source code (v6.13)

cflow (call graphs) [13]
cscope (code
navigation) [14]

SYSCALL_DEFINE2 (ftruncate, unsigned int, fd, off_t, length)
../linux/fs/open.c:214

int do_sys_ftruncate (unsigned int fd, loff_t length, int small)
../linux/fs/open.c:202

int do_ftruncate (struct file *file, loff_t length, int small)
../linux/fs/open.c:163

...

... security_file_truncate()
int do_truncate (...)
../linux/fs/open.c:39

7

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Coverage Analysis (Syscall ←→ LSM)

Limitations

LSM Hooks
LSM Hooks

LSM Hooks
LSM Hooks

LSM Hooks

69% trigger ≥1 LSM hook

System calls

64% are triggered by ≥1 syscall

indirect function calls
function exported from a kernel module
conditional branching is not considered

8

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Coverage Analysis (Syscall ←→ LSM)

Limitations

LSM Hooks
LSM Hooks

LSM Hooks
LSM Hooks

LSM Hooks

69% trigger ≥1 LSM hook

System calls

64% are triggered by ≥1 syscall

indirect function calls
function exported from a kernel module
conditional branching is not considered

8

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Stability across kernel versions compared to system calls

Objective
compare the rate of change in LSM hook interfaces vs. system call interfaces

Method
track Application Binary Interface (ABI) changes across kernel versions

added functions
removed functions
signature changes

9

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Stability across kernel versions compared to system calls

Objective
compare the rate of change in LSM hook interfaces vs. system call interfaces

Method
track Application Binary Interface (ABI) changes across kernel versions

added functions
removed functions
signature changes

9

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Stability across kernel versions compared to system calls

backwards compatibility
LSM and interface has
grown substantially
frequent changes:
▶ additions
▶ removals
▶ renaming
▶ argument modifications

Linux
version

Release
date

LSM
hooks

Argument
changes

System
calls

Argument
changes

2.6.12 2005-06-17 =131 – =251 –
2.6.30 2009-06-09 +72/-22 19 +79/-0 8
3.1 2011-10-24 +17/-14 8 +17/-1 15
3.12 2013-11-03 +12/-4 12 +13/-0 16
4.1 2015-06-21 +7/-2 3 +9/-0 4
4.12 2017-07-02 +8/-3 19 +10/-0 5
5.1 2019-05-05 +23/-4 24 +37/-0 27
5.12 2021-04-25 +16/-2 26 +15/-1 13
6.1 2022-12-11 +10/-2 10 +8/-1 0
6.12 2024-11-17 +33/-8 20 +14/-1 7
6.13 2025-01-19 +6/-4 1 +4/-0 0

10

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Conclusion

Future Work
refine coverage analysis
▶ advanced static tools like Kayrebt [15]
▶ fuzzing-based dynamic analysis [16]

identify missing LSM hooks to cover kernel object
▶ allocation
▶ activity
▶ information flow

qualify the ABI changes

11

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Towards Provenance for Cybersecurity in
Cloud-Native Production Infrastructure

DSN 2025 Doctoral Forum

Paul R. B. Houssel1,2 Sylvie Laniepce1 Olivier Levillain2

1Orange Research, Caen, France
2Institut Polytechnique de Paris, SAMOVAR, Télécom SudParis, Palaiseau, France

June 25, 2025

12

Context PhD Research Plan Preliminary Results and Future Work Conclusion

References I

T. Song, M. Organokov, L. Gulikers, G. Grassi, G. Carofiglio, and M. Meo,
“Advancing Cloud-Native Cyber Threat Detection with Graph-Based Feature
Engineering,” pp. 4291–4297, IEEE Computer Society, May 2025.
ISSN: 2375-026X.

W. Blair, F. Araujo, T. Taylor, and J. Jang, “Automated Synthesis of Effect
Graph Policies for Microservice-Aware Stateful System Call Specialization,” in
2024 IEEE Symposium on Security and Privacy (SP), pp. 4554–4572, May
2024.
ISSN: 2375-1207.

B. Jiang, T. Bilot, N. E. Madhoun, K. A. Agha, A. Zouaoui, S. Iqbal, X. Han,
and T. Pasquier, “ORTHRUS: Achieving High Quality of Attribution in
Provenance-based Intrusion Detection Systems,” 2025.

13

Context PhD Research Plan Preliminary Results and Future Work Conclusion

References II

T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Proceedings of
the 2017 Symposium on Cloud Computing, (Santa Clara, California, US),
pp. 405–418, ACM, Sept. 2017.

J. Li, R. Zhang, J. Liu, and G. Liu, “LogKernel: A Threat Hunting Approach
Based on Behaviour Provenance Graph and Graph Kernel Clustering,”
Security and Communication Networks, vol. 2022, no. 1, p. 4577141, 2022.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1155/2022/4577141.

“strace - the linux syscall tracer,” 1991.

14

Context PhD Research Plan Preliminary Results and Future Work Conclusion

References III

L. Yu, Y. Ye, Z. Zhang, and X. Zhang, “Cost-effective Attack Forensics by
Recording and Correlating File System Changes,” in Proceedings of the 33rd
USENIX Security Symposium (USENIX Security 24), (Philadelphia, PA, USA),
2024.

“ftrace - Function Tracer — The Linux Kernel documentation.”

“auditd - The Linux Audit daemon,” 1994.

S. Smalley, C. Vance, and W. Salamon, Implementing SELinux as a Linux
security module.
NAI Labs Report, 2001.

“Falco: open source security tool for containers, kubernetes and cloud,”
2014.
original-date: 2021-02-08T14:46:41Z.

15

Context PhD Research Plan Preliminary Results and Future Work Conclusion

References IV

“Tetragon - eBPF-based Security Observability and Runtime Enforcement,”
2022.

“Cflow - GNU Project - Free Software Foundation.”

“cscope - interactively examine a C program,” 2002.

L. Georget, F. Tronel, and V. V. T. Tong, “Kayrebt: An activity diagram
extraction and visualization toolset designed for the Linux codebase,” in 2015
IEEE 3rd Working Conference on Software Visualization (VISSOFT), (Bremen,
Germany), pp. 170–174, IEEE, Sept. 2015.

D. Jones, “Trinity: A Linux system call fuzzer.”

R. Guo and J. Zeng, “Phantom Attack: Evading System Call Monitoring,”
2021.

16

Context PhD Research Plan Preliminary Results and Future Work Conclusion

Stability Analysis (ABI Evolution)

17

Context PhD Research Plan Preliminary Results and Future Work Conclusion

eBPF attachements

Program Attach TOCTOU resistant [17] Granularity Stable Kernel ≥
type type system Calls kfunc. ufunc. AC op. cgroup

LSM LSM_MAC l m m m l l l 5.7

tracepoint tracepoint w l w m m m l 4.7

kprobe kprobe w l l l l m m 4.1

tracing fentry w l l l l m m 5.1

18

	Context
	PhD Research Plan
	Preliminary Results and Future Work
	Conclusion

