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Provenance Graphs

interactions between system subjects and objects
understand system behavior, establish causality

threat detection
▶ sub-graph embedding [1]
▶ graph queries [2]
▶ benign behavior model [1, 3]

forensics
▶ post-mortem root cause analysis [4]
▶ active threat hunting [5]

process A pipe process B
write read
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Cloud-Native: An emerging infrastructure shift

Telemetry Collection for Cloud-Native production environments

fine-grained, per-container telemetry
distinguish container and host activity
handle large system activity
uniquely identify system objects
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Telemetry Collection for Provenance

Location Approach Efficiency Visibility Safety Portability Example

user land ptrace, fs snapshot m m l l strace [6], ARTISAN [7]

kernel

integrated tool l l l m ftrace [8], auditd [9]

kernel module l l m l SELinux [10], CamFlow [4]

eBPF l l l l falco [11], tetragon [12]
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Linux Security Module (LSM) hooks

Kernel

accept accept4

sys_accept4

sys_accept4_file

do_accept

socket_accept

connection error
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Linux Security Module (LSM) hooks

verifier

Kernel

BPF

maps

accept accept4

sys_accept4

sys_accept4_file

do_accept

socket_accept
Connection ?

connection error

No/Yes

SEC( " l sm/ socket _accept " )
i nt  BPF_PROG( t ask_accept _l sm)  {

st r uct  event  evt  = { } ;
      evt . pi d = bpf _get _cur r ent _pi d( ) ;

bpf _per f _event _out put ( &evt ) ;
      r et ur n 0;
}

User Program

BPF Bytecode

Telemetry Traces
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Preliminary Results and Future Work
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Coverage: sufficient system visibility for sound provenance ?

Objective
relationship between system
calls and LSM hooks

Method
static analysis of Linux kernel
source code (v6.13)

cflow (call graphs) [13]
cscope (code
navigation) [14]

SYSCALL_DEFINE2 (ftruncate, unsigned int, fd, off_t, length)
../linux/fs/open.c:214

int do_sys_ftruncate (unsigned int fd, loff_t length, int small)
../linux/fs/open.c:202

int do_ftruncate (struct file *file, loff_t length, int small)
../linux/fs/open.c:163

...

... security_file_truncate()
int do_truncate (...)
../linux/fs/open.c:39
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Coverage Analysis (Syscall ←→ LSM )

Limitations

LSM Hooks
LSM Hooks

LSM Hooks
LSM Hooks

LSM Hooks

69% trigger ≥1 LSM hook

System calls

64% are triggered by ≥1 syscall

indirect function calls
function exported from a kernel module
conditional branching is not considered

8



Context PhD Research Plan Preliminary Results and Future Work Conclusion

Coverage Analysis (Syscall ←→ LSM )

Limitations

LSM Hooks
LSM Hooks

LSM Hooks
LSM Hooks

LSM Hooks

69% trigger ≥1 LSM hook

System calls

64% are triggered by ≥1 syscall

indirect function calls
function exported from a kernel module
conditional branching is not considered

8



Context PhD Research Plan Preliminary Results and Future Work Conclusion

Stability across kernel versions compared to system calls

Objective
compare the rate of change in LSM hook interfaces vs. system call interfaces

Method
track Application Binary Interface (ABI) changes across kernel versions

added functions
removed functions
signature changes
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Stability across kernel versions compared to system calls

backwards compatibility
LSM and interface has
grown substantially
frequent changes:
▶ additions
▶ removals
▶ renaming
▶ argument modifications

Linux
version

Release
date

LSM
hooks

Argument
changes

System
calls

Argument
changes

2.6.12 2005-06-17 =131 – =251 –
2.6.30 2009-06-09 +72/-22 19 +79/-0 8
3.1 2011-10-24 +17/-14 8 +17/-1 15
3.12 2013-11-03 +12/-4 12 +13/-0 16
4.1 2015-06-21 +7/-2 3 +9/-0 4
4.12 2017-07-02 +8/-3 19 +10/-0 5
5.1 2019-05-05 +23/-4 24 +37/-0 27
5.12 2021-04-25 +16/-2 26 +15/-1 13
6.1 2022-12-11 +10/-2 10 +8/-1 0
6.12 2024-11-17 +33/-8 20 +14/-1 7
6.13 2025-01-19 +6/-4 1 +4/-0 0
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Conclusion

Future Work
refine coverage analysis
▶ advanced static tools like Kayrebt [15]
▶ fuzzing-based dynamic analysis [16]

identify missing LSM hooks to cover kernel object
▶ allocation
▶ activity
▶ information flow

qualify the ABI changes
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eBPF attachements

Program Attach TOCTOU resistant [17] Granularity Stable Kernel ≥
type type system Calls kfunc. ufunc. AC op. cgroup

LSM LSM_MAC l m m m l l l 5.7

tracepoint tracepoint w l w m m m l 4.7

kprobe kprobe w l l l l m m 4.1

tracing fentry w l l l l m m 5.1
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